Dynamics
Introduction
Newton's Second Law
$$\begin{equation} \mathbf{F} = m\mathbf{a}= m \frac{d\mathbf{v}}{dt} = \frac{d^2\mathbf{x}}{dt^2} \end{equation}$$Newton's Third Law
The force exerted by object $i$ onto object $j$ is opposite of the force exerted by object $j$ onto object $i$. (We use lower case $f$ for internal forces):
$$\begin{equation} \mathbf{f}_{ij} = - \mathbf{f}_{ji} \end{equation}$$
External Force
Denote the total external force exerted on object $i$ as (we use upper case $F$ for external forces) $\mathbf{F}_i$.
Applications
One object without external force
$\mathbf{F} = 0$, therefore, $\frac{d\mathbf{v}}{dt} = 0$, i.e., $\mathbf{v}$ does not change. The trajectory of the object is:
$\mathbf{x} = \mathbf{x}_{0} + \mathbf{v}t$.
One object with constant force (same direction)
$\mathbf{a} = \frac{\mathbf{F}}{m}$
$\mathbf{x} = \mathbf{x}_0 + \mathbf{v}_0t + \frac{1}{2}\mathbf{a}t^2$
Average velocity:
$\bar{\mathbf{v}} = \frac{1}{2}(\mathbf{v}_0 + \mathbf{v}_f)$
Time spent:
$t = \frac{\mathbf{v}_f - \mathbf{v}_0}{\mathbf{a}}$
Total distance:
$\mathbf{S} = \bar{\mathbf{v}}t= \frac{1}{2}(\mathbf{v}^2_f - \mathbf{v}^2_0)$
Two objects without external force
$$\mathbf{f}_{ji} = m_i \frac{d\mathbf{v}_i}{dt}$$
$$\mathbf{f}_{ij} = m_j \frac{d\mathbf{v}_j}{dt}$$
The sum gives (uses Equation (2)):
$$\begin{equation} m_i \frac{d\mathbf{v}_i}{dt} + m_j \frac{d\mathbf{v}_j}{dt} = 0 \end{equation}$$
Rewritten as:
$$\frac{d (m_i \mathbf{v}_i + m_j \mathbf{v}_j)}{dt} = 0$$
Conservation of momentum:
$$\begin{equation} m_i \mathbf{v}_i + m_j \mathbf{v}_j = const \end{equation}$$
\frac{d^2 (m_i \mathbf{x}_i + m_j \mathbf{x}_j)}{dt^2} = 0 \end{equation}$$
No comments:
Post a Comment